DNA Lady, LLC 732-632-8820

Home Science_Of_DNA Forensic

Home
Science_Of_DNA
Ancestry
BioTech
Family
Forensic
Medical
Animal
Products
Local
Community
Social Net
Blogs
Search
SiteMap
Admin
Exit
Articles from Springer a leading global scientific publisher of scientific books and journals. - dna forensic @ Fri, 19 Jan 2018 at 07:31 AM
Forensic Science - Encyclopedia of Law and Economics @ 2021-01-01
Forensic science applies natural, physical, and social sciences to resolve legal matters. The term forensics has been attached to many different fields: economics, anthropology, dentistry, pathology, toxicology, entomology, psychology, accounting, engineering, and computer forensics. Forensic evidence is gathered, examined, evaluated, interpreted, and presented to make sense of an event and provide investigatory leads. Various classification schemes exist for forensic evidence, with some forms of evidence falling under more than one scheme. Rules of evidence differ between jurisdictions, even between countries that share similar legal traditions. This makes the sharing of evidence between countries particularly problematic, at times rendering this evidence inadmissible in national courts. Several measures have been proposed and organizations created to strengthen forensic science and promote best practices for practitioners, researchers, and academicians in the field.
 
Genetics and Tropical Forests - Tropical Forestry Handbook @ 2021-01-01
Abstract
 
Genetics and Tropical Forests - Tropical Forestry Handbook @ 2021-01-01
Abstract
 
Fluorescence Lifetime Imaging - Handbook of Photonics for Biomedical Engineering @ 2021-01-01
Fluorescence lifetime imaging (FLIM) is a key fluorescence microscopy technique to map the environment and interaction of fluorescent probes. It can report on photophysical events that are difficult or impossible to observe by fluorescence intensity imaging, because FLIM is largely independent of the local fluorophore concentration and excitation intensity. Many FLIM applications relevant for biology concern the identification of Förster resonance energy transfer (FRET) to study protein interactions and conformational changes. In addition, FLIM has been used to image viscosity, temperature, pH, refractive index, and ion and oxygen concentrations, all at the cellular level. The basic principles and recent advances in the application of FLIM, FLIM instrumentation, molecular probe, and FLIM detector development will be discussed.
 
Abstract
 
Abstract
 
 
 
Pharmacogenetics of Methadone Response - Molecular Diagnosis & Therapy @ 2018-02-01
The efficacy of methadone maintenance treatment (MMT) in opioid use disorder is well established but responses vary. The influence of methadone pharmacodynamics and pharmacokinetics on dose requirements and program outcomes remains controversial despite the increasing number of studies evaluating genetic influences on response to methadone treatment. Furthermore, patients require different doses (usually between 60 and 100 mg/day), and there are no clear data on a plasma concentration associated with treatment success. We review the evidence regarding the influence of genetics on pharmacokinetic and pharmacodynamic factors in terms of MMT outcome. We also analyse the influence of genetics on the occurrence of severe adverse events such as respiratory depression and ventricular arrhythmia in methadone treatment. The outcomes of MMT may be influenced by a combination of environmental, drug-induced, and genetic factors. The influence of pharmacokinetic genetic variability can be clinically managed by modifying the posology. A better understanding of pharmacodynamic factors could help in selecting the best opioid for substitution treatment, but patient phenotype must still be considered when establishing a maintenance treatment. Pharmacogenetic studies represent a promising field that aims to individualize treatments according to genetic backgrounds, adapting medication and doses according to possible outcomes and the risk of adverse events.
 
Due to the rapid elimination of bacteria through normal behaviour of filter feeding and excretion, the decontamination of hazardous contaminating bacteria from shellfish is performed by depuration. This process, under conditions that maximize shellfish filtering activity, is a useful method to eliminate microorganisms from bivalves. The microbiota composition in bivalves reflects that of the environment of harvesting waters, so quite different bacteriomes would be expected in shellfish collected in different locations. Bacterial accumulation within molluscan shellfish occurs primarily in the hepatopancreas. In order to assess the effect of the depuration process on these different bacteriomes, in this work we used 16S RNA pyrosequencing and metagenome prediction to assess the impact of 15 h of depuration on the whole hepatopancreas bacteriome of mussels collected in three different locations.
 
 
 
Found 12 Articles for dna forensic